Titer Determination of Strong Acids

CHEMICAL SERIES

Introduction

This application report describes the general procedure for the titer determination of aqueous strong acids like Hydrochloric acid, Sulfuric acid, Perchloric acid and Nitric acid. The procedure is also usable for strong acids in water-soluble organic solvents like alcohols. It is not suitable for titer determination of Perchloric acid in Glacial acetic acid.

The titer is a dimensionless number about 1 for correcting the indicated concentration. In the software of the titration devices and application reports from YSI, the term "Titer" describes the exact concentration in mol/l and not the dimensionless factor.

TL 7000 or higher
Magnetic stirrer TM 235 or similar

Electrode, Cable, and Electrolyte

N 62 or A 7780 1M-DIN-ID or Similar

L 1 A Cable (Only for Electrodes with Plug Head)

Lab Accessories

Glass Beaker 150 ml
Magnetic Stirrer Bar 30 mm

Reagents

The acid from which the titer is to be determined
Distilled water
Tris(hydroxymethyl)-aminomethan (TRIS) - certified reference material, volumetric standard KCl solution $3 \mathrm{~mol} / \mathrm{l}$

All reagents should be in analytical grade or better.

Titration Procedure

Reagents

The TRIS volumetric standard is dried as described in the corresponding certificate of analysis, mostly 24 h at room temperature over drying agent.

The distilled water has to be free of CO_{2} or Carbonate. In order to remove any CO_{2}, the water is briefly boiled and allowed to cool down in a covered container.

Cleaning and Storage of the Electrode

Use distilled water for cleaning the electrode. For storage use KCl solution $3 \mathrm{~mol} / \mathrm{I}$ or electrolyte solution L 911 .

Sample Preparation

The amount of volumetric standard depends on the size of the burette and the concentration of the acid. The amount should be chosen so that about half of the burette volume is consumed. The most common is the 20 ml burette. The required quantity of TRIS can be estimated according to this rule of thumb:

To determine the titer of a $0.1 \mathrm{~mol} / \mathrm{l}$ acid, about 0.12 g TRIS volumetric standard are weighed into a 150 ml beaker with an accuracy of 0.1 mg and filled up to 80 ml with distilled, CO_{2}-free water. When the TRIS is completely dissolved, the acid is titrated to an EQ.

If the specified assay of the volumetric standard is significantly different from 100\%, the weight for calculating the concentration must be corrected:

$$
W=\frac{\text { Weight * specified assay \% }}{100}
$$

W [g] = Concentration[mol/l]

Titration parameter

Default Method - Titre HCl			
Method type	Automatic Titration		
Mode	Dynamic		
Measured Value	pH		
Measuring Speed / Drift	Normal	Minimum Holding Time	2 s
		Maximum Holding time	15 s
		Measuring Time	2 s
Initial Waiting Time	Drift	$20 \mathrm{mV} / \mathrm{min}$	
Dynamic	Steep	Max Step Size	
		Slope Max ml	1.0 ml
Damping	Min. Step Size	15	
Pretitration	Slope Min. ml	0.02 ml	
End Value	Titration Direction	230	
EQ	Delay Time	Decrease	
Max. Titration Volume	2.5	0 s	
Dosing Speed	20 ml	Slope Value	700

Calculation: $\quad T[\mathrm{~mol} / \mathrm{l}]=\frac{\mathrm{W} * \mathrm{~F} 2}{(\mathrm{EQ} 2-\mathrm{B}) * \mathrm{M} * \mathrm{~F} 1}$

B	0	Blank value
W	Man	Weight of the Sample $[\mathrm{g}]$
F2	1000	Conversion Factor ml - I
EQ1		Consumption of Titrant until First Equivalence Point M
F1	121.136	Molecular Mass
Fonversion Factor		

We recommend to write the exact concentration T to the Exchangable Unit (WA) automatically.

Yellow Springs, OH 45387

